Features
- Low noise switching
- High switching frequency
- Compact design
- Low energy consumption

Connection
Tube-D	**KV**	**Weight**
5/8" | 4.5 | 0.65 kg | VCL50(*)
7/8" | 5.5 | 0.70 kg | VCM50(*)
1 1/8" | 6.5 | 0.75 kg | VCN50(*)

1) The KV-Value is the water flow in m³/h, at pressure drop across the valve of 1 bar.

(*): Voltage code:
- 0 = without coil
- 1 = 230V DC/AC
- 2 = 024V DC/AC
- 4 = 012V DC/AC
- 5 = 110V DC/AC

The voltage code is the end number of the valve article number. (e.g.: VCM501)

Nominal Refrigeration Capacity (KW)

<table>
<thead>
<tr>
<th>Tube-D</th>
<th>Liquid</th>
<th>Suction Steam</th>
<th>Hot Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/8"</td>
<td>90</td>
<td>62.55</td>
<td>83.7</td>
</tr>
<tr>
<td>7/8"</td>
<td>110</td>
<td>76.45</td>
<td>102.3</td>
</tr>
<tr>
<td>1 1/8"</td>
<td>130</td>
<td>90.35</td>
<td>120.9</td>
</tr>
</tbody>
</table>

2) The nominal liquid and suction steam capacity is based on the evaporation temperature $t_0 = -10°C$ liquid temperature ahead the valve $t_u = +25°C$ and $D_p = 0.15$ bar.

The nominal hot gas capacity is based on the liquefying temperature $t_k = +40°C$, pressure drop across the Valve $D_p = 0.8$ bar, hot gas $t_h = +65°C$ and subcooling of refrigerant liquid $D_u = 4$ K.